Take our Survey

Reference: West KL, et al. (2000) Mutagenesis of E477 or K505 in the B' domain of human topoisomerase II beta increases the requirement for magnesium ions during strand passage. Biochemistry 39(6):1223-33

Reference Help

Abstract

A type II topoisomerase is essential for decatenating DNA replication products, and it accomplishes this task by passing one DNA duplex through a transient break in a second duplex. The B' domain of topoisomerase II contains three highly conserved motifs, EGDSA, PL(R/K)GK(I/L/M)LNVR, and IMTD(Q/A)DXD. We have investigated these motifs in topoisomerase II beta by mutagenesis, and report that they play a critical role in establishing the DNA cleavage-religation equilibrium. In addition, the mutations E477Q (EGDSA) and K505E (PLRGKILNVR) increase the optimal magnesium ion concentration for strand passage, without affecting the Mg(2+) dependence of ATP hydrolysis. It is likely that the binding affinity of the magnesium ion(s) specifically required for DNA cleavage has been reduced by these mutations. The crystal structure of yeast topo II indicates that residues E477 and K505 may help to position the three aspartate residues of the IMTD(Q/A)DXD motif for magnesium ion coordination, and we propose two possible locations for the magnesium ion binding site(s). These observations are consistent with a previous model in which the B' domain is positioned such that these acidic residues lie next to the active site tyrosine residue. A magnesium ion bound by these aspartate residues could therefore mediate the DNA cleavage-religation reaction.

Reference Type
Journal Article
Authors
West KL, Meczes EL, Thorn R, Turnbull RM, Marshall R, Austin CA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference