Reference: Norbeck J and Blomberg A (2000) The level of cAMP-dependent protein kinase A activity strongly affects osmotolerance and osmo-instigated gene expression changes in Saccharomyces cerevisiae. Yeast 16(2):121-37

Reference Help

Abstract


The influence of cAMP-dependent protein kinase (PKA) on protein expression during exponential growth under osmotic stress was studied by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The responses of isogenic strains (tpk2Deltatpk3Delta) with either constitutively low (tpk1(w1)), regulated (TPK1) or constitutively high (TPK1bcy1Delta) PKA activity were compared. The activity of cAMP-dependent protein kinase (PKA) was shown to be a major determinant of osmotic shock tolerance. Proteins with increased expression during growth under sodium chloride stress could be grouped into three classes with respect to PKA activity, with the glycerol metabolic proteins GPD1, GPP2 and DAK1 standing out as independent of PKA. The other osmotically induced proteins displayed a variable dependence on PKA activity; fully PKA-dependent genes were TPS1 and GCY1, partly PKA-dependent genes were ENO1, TDH1, ALD3 and CTT1. The proteins repressed by osmotic stress also fell into distinct classes of PKA-dependency. Ymr116c was PKA-independent, while Pgi1p, Sam1p, Gdh1p and Vma1p were fully PKA-dependent. Hxk2p, Pdc1p, Ssb1p, Met6p, Atp2p and Hsp60p displayed a partially PKA-dependent repression. The promotors of all induced PKA-dependent genes have STRE sites in their promotors suggestive of a mechanism acting via Msn2/4p. The mechanisms governing the expression of the other classes are unknown. From the protein expression data we conclude that a low PKA activity causes a protein expression resembling that of osmotically stressed cells, and furthermore makes cells tolerant to this type of stress. Copyright 2000 John Wiley & Sons, Ltd.

Reference Type
Journal Article
Authors
Norbeck J, Blomberg A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference