Reference: Pruyne D and Bretscher A (2000) Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J Cell Sci 113 ( Pt 3):365-75

Reference Help

Abstract


The ability to polarize is a fundamental property of cells. The yeast Saccharomyces cerevisiae has proven to be a fertile ground for dissecting the molecular mechanisms that regulate cell polarity during growth. Here we discuss the signaling pathways that regulate polarity. In the second installment of this two-part commentary, which appears in the next issue of Journal of Cell Science, we discuss how the actin cytoskeleton responds to these signals and guides the polarity of essentially all events in the yeast cell cycle. During the cell cycle, yeast cells assume alternative states of polarized growth, which range from tightly focused apical growth to non-focused isotropic growth. RhoGTPases, and in particular Cdc42p, are essential to guiding this polarity. The distribution of Cdc42p at the cell cortex establishes cell polarity. Cyclin-dependent protein kinase, Ras, and heterotrimeric G proteins all modulate yeast cell polarity in part by altering the distribution of Cdc42p. In turn, Cdc42p generates feedback signals to these molecules in order to establish stable polarity states and coordinate cytoskeletal organization with the cell cycle. Given that many of these signaling pathways are present in both fungi and animals, they are probably ancient and conserved mechanisms for regulating polarity.

Reference Type
Comment | Journal Article | Review | Review, Academic
Authors
Pruyne D, Bretscher A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference