Reference: Athenstaedt K and Daum G (2000) 1-Acyldihydroxyacetone-phosphate reductase (Ayr1p) of the yeast Saccharomyces cerevisiae encoded by the open reading frame YIL124w is a major component of lipid particles. J Biol Chem 275(1):235-40

Reference Help

Abstract


Biosynthesis of phosphatidic acid through the dihydroxyacetone phosphate pathway requires NADPH-dependent reduction of the intermediate 1-acyldihydroxyacetone phosphate before the second step of acylation. Studies with isolated subcellular fractions of the yeast Saccharomyces cerevisiae revealed that lipid particles and the endoplasmic reticulum harbor 1-acyldihydroxyacetone-phosphate reductase (ADR) activity. Deletion of the open reading frame YIL124w (in the following named AYR1) abolished reduction of 1-acyldihydroxyacetone phosphate in lipid particles, whereas ADR activity in microsomes of the deletion strain was decreased approximately 3-fold as compared with the wild-type level. This result indicates that (i) both lipid particles and microsomes harbor Ayr1p, which was confirmed by immunological detection of the protein in these two cellular compartments, and (ii) microsomes contain at least one additional ADR activity. As a consequence of this redundancy, deletion of AYR1 neither results in an obvious growth phenotype nor affects the lipid composition of a haploid deletion strain. When a heterozygous AYR1(+)/ayr1(-) diploid strain was subjected to sporulation; however, spores bearing the ayr1 defect failed to germinate, suggesting that Ayr1p plays an essential role at this stage. Overexpression of Ayr1p at a 5- to 10-fold level of wild type caused growth arrest. Heterologous expression of Ayr1p in Escherichia coli resulted in gain of ADR activity in the prokaryote, confirming that YIL124w is the structural gene of the enzyme and does not encode a regulatory or auxiliary component required for reduction of 1-acyldihydroxyacetone phosphate. Taken together, these results identified Ayr1p of the yeast as the first ADR from any organism at the molecular level.

Reference Type
Journal Article
Authors
Athenstaedt K, Daum G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference