Reference: Yan Q and Lennarz WJ (1999) Oligosaccharyltransferase: a complex multisubunit enzyme of the endoplasmic reticulum. Biochem Biophys Res Commun 266(3):684-9

Reference Help

Abstract


The attachment of N-linked oligosaccharide chains to proteins is an important cotranslational process. These chains can, in some cases, serve to stabilize the protein, while in other cases they function as recognition elements. A key enzyme in the N-glycosylation process is oligosaccharyltransferase (OT). In yeast this enzyme, which is found in the endoplasmic reticulum, consists of nine different transmembrane protein subunits. Our general aim is to learn more about the functions of the multiple subunits of yeast OT and their mode of interaction with each other. Using a combination of biochemical and genetic techniques the subunit Ost1p has been shown to recognize Asn-X-Ser/Thr glycosylation sites. The principle tool used in the identification process was a benzophenone-based glycosylation site peptide that was shown to be crosslinked to Ost1p. Our current objective is to identify the domain in the primary structure that is involved in recognition of the glycosylation site sequence. By use of bifunctional crosslinkers, the possible interaction of Ost1p with other subunits of OT will be studied. This work and other studies on the OT subunits are concisely summarized.CI - Copyright 1999 Academic Press.

Reference Type
Journal Article | Review | Research Support, U.S. Gov't, P.H.S.
Authors
Yan Q, Lennarz WJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference