Reference: Yue C, et al. (1999) The STE12alpha homolog is required for haploid filamentation but largely dispensable for mating and virulence in Cryptococcus neoformans. Genetics 153(4):1601-15

Reference Help

Abstract

Cryptococcus neoformans is a fungal pathogen that causes meningitis in immunocompromised hosts. The organism has a known sexual cycle, and strains of the MATalpha mating type are more virulent than isogenic MATa strains in mice, and they are more common in the environment and infected hosts. A C. neoformans homolog of the STE12 transcription factor that regulates mating, filamentation, and virulence in Saccharomyces cerevisiae and Candida albicans was identified previously, found to be encoded by a novel region of the MATalpha mating type locus, and shown to enhance filamentous growth when overexpressed. We have disrupted the C. neoformans STE12 gene in a pathogenic serotype A isolate. ste12 mutant strains exhibit a severe defect in filamentation and sporulation (haploid fruiting) in response to nitrogen starvation. In contrast, ste12 mutant strains have only modest mating defects and are fully virulent in two animal models compared to the STE12 wild-type strain. In genetic epistasis experiments, STE12 functions in a MAP kinase cascade to regulate fruiting, but not mating. Thus, the C. neoformans STE12alpha transcription factor homolog plays a specialized function in haploid fruiting, but it is dispensable or redundant for mating and virulence. The association of the MATalpha locus with virulence may involve additional genes, and other transcription factors that regulate mating and virulence remain to be identified.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Yue C, Cavallo LM, Alspaugh JA, Wang P, Cox GM, Perfect JR, Heitman J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference