Reference: Patturajan M, et al. (1999) Yeast carboxyl-terminal domain kinase I positively and negatively regulates RNA polymerase II carboxyl-terminal domain phosphorylation. J Biol Chem 274(39):27823-8

Reference Help

Abstract

Monoclonal antibodies that recognize specific carboxyl-terminal domain (CTD) phosphoepitopes were used to examine CTD phosphorylation in yeast cells lacking carboxyl-terminal domain kinase I (CTDK-I). We show that deletion of the kinase subunit CTK1 results in an increase in phosphorylation of serine in position 5 (Ser(5)) of the CTD repeat (Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7)) during logarithmic growth. This result indicates that CTDK-I negatively regulates CTD Ser(5) phosphorylation. We also show that CTK1 deletion (ctk1Delta) eliminates the transient increase in CTD serine 2 (Ser(2)) phosphorylation observed during the diauxic shift. This result suggests that CTDK-I may play a direct role in phosphorylating CTD Ser(2) in response to nutrient depletion. Northern blot analysis was used to show that genes normally induced during the diauxic shift are not properly induced in a ctk1Delta strain. Glycogen synthase (GSY2) and cytosolic catalase (CTT1) mRNA levels increase about 10-fold in wild-type cells, but this increase is not observed in ctk1Delta cells suggesting that increased message levels may require Ser(2) phosphorylation. Heat shock also induces Ser(2) phosphorylation, but we show here that this change in CTD modification and an accompanying induction of heat shock gene expression is independent of CTDK-I. The observation that SSA3/SSA4 expression is increased in ctk1Delta cells grown at normal temperature suggests a possible role for CTDK-I in transcription repression. We discuss several possible positive and negative roles for CTDK-I in regulating CTD phosphorylation and gene expression.

Reference Type
Journal Article
Authors
Patturajan M, Conrad NK, Bregman DB, Corden JL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference