Reference: Miller CA, et al. (1999) The inefficient replication origin from yeast ribosomal DNA is naturally impaired in the ARS consensus sequence and in DNA unwinding. Nucleic Acids Res 27(19):3921-30

Reference Help

Abstract

Ribosomal DNA (rDNA) replication origins of Saccharomyces cerevisiae are known to function inefficiently, both in the context of the tandem rDNA repeats in the chromosome and as single copy autonomously replicating sequences (ARSs) in plasmids. Here we examined components of the rDNA ARS that might contribute to inefficient extrachromosomal replication. Like the efficient H4 ARS, the rDNA ARS requires a match to the 11 bp ARS consensus sequence (ACS) and a broad non-conserved region that may contain multiple elements, including a DNA unwinding element (DUE). Using a single-strand-specific nuclease hypersensitivity assay and by determining the superhelical density required for stable DNA unwinding, we found that the DNA of the rDNA ARS is not as easily unwound as the H4 ARS. Unwinding of the rDNA ARS required additional energy, similar to the unwinding of mutations in the H4 ARS that stabilize the double helix in the DUE region and impair replication. In vivo extrachromosomal replication of the rDNA ARS was cold sensitive, like H4 ARS mutants that require additional energy to unwind the DUE region but unlike the easily unwound, wild-type H4 ARS. Impairment of replication function at reduced temperature suggests that the elevated energy requirement for DNA unwinding inherent in the wild-type rDNA ARS contributes to inefficient replication function. We also examined the essential ACS match in the rDNA ARS, which is known to be imperfect at one position. A point mutation in the essential ACS that corrects the imperfect match increased the efficiency of extrachromosomal replication. Our results reveal that the essential ACS element and DNA unwinding in the rDNA ARS are naturally impaired, suggesting that inefficient function of the rDNA replication origin has a biological purpose.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Miller CA, Umek RM, Kowalski D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference