Reference: Sano F, et al. (1999) A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39(1):80-7

Reference Help

Abstract

It is well known that yeast cells survive environmental stresses such as desiccation and freezing and there is evidence that these phenomena may be related to the presence of trehalose in the cells. However, the molecular mechanism by which trehalose might exert an influence on cell functions remains unknown. In this report, thermogravimetry and differential thermal analysis were used to estimate the amount of bound water in yeast cells. It is shown that when the trehalose content is greater than 2-3% of the cell dry weight, the amount of bound water is drastically decreased and the viability of the dried cells is increased. This implies that a major portion of the bound water is replaced by trehalose. In addition, measurements of the NMR spin-lattice relaxation time of the intracellular water protons show that trehalose acts as a water-structuring agent in hydrated yeast cells. This dual role is essential for high resistance to water stress in yeast cells.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Sano F, Asakawa N, Inoue Y, Sakurai M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference