Take our Survey

Reference: Bui DM, et al. (1999) The bacterial magnesium transporter CorA can functionally substitute for its putative homologue Mrs2p in the yeast inner mitochondrial membrane. J Biol Chem 274(29):20438-43

Reference Help

Abstract

The yeast nuclear gene MRS2 encodes a protein of 54 kDa, the presence of which has been shown to be essential for the splicing of group II intron RNA in mitochondria and, independently, for the maintenance of a functional respiratory system. Here we show that the MRS2 gene product (Mrs2p) is an integral protein of the inner mitochondrial membrane. It appears to be inserted into this membrane by virtue of two neighboring membrane spanning domains in its carboxyl-terminal half. A large amino-terminal and a shorter carboxyl-terminal part are likely to be exposed to the matrix space. Structural features and a short sequence motif indicate that Mrs2p may be related to the bacterial CorA Mg2+ transporter. In fact, overexpression of the CorA gene in yeast partially suppresses the pet- phenotype of an mrs2 disrupted yeast strain. Disruption of the MRS2 gene leads to a significant decrease in total magnesium content of mitochondria which is compensated for by the overexpression of the CorA gene. Mutants lacking or overproducing Mrs2p exhibit phenotypes consistent with the involvement of Mrs2p in mitochondrial Mg2+ homeostasis.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Bui DM, Gregan J, Jarosch E, Ragnini A, Schweyen RJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference