Reference: Pena MM, et al. (1999) A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 129(7):1251-60

Reference Help

Abstract


The cellular uptake and intracellular distribution of the essential but highly toxic nutrient, copper, is a precisely orchestrated process. Copper homeostasis is coordinated by several proteins to ensure that it is delivered to specific subcellular compartments and copper-requiring proteins without releasing free copper ions that will cause damage to cellular components. Genetic studies in prokaryotic organisms and yeast have identified membrane-associated proteins that mediate the uptake or export of copper from cells. Within cells, small cytosolic proteins, called copper chaperones, have been identified that bind copper ions and deliver them to specific compartments and copper-requiring proteins. The identification of mammalian homologues of these proteins reveal a remarkable structural and functional conservation of copper metabolism between bacteria, yeast and humans. Furthermore, studies on the function and localization of the products of the Menkes and Wilson's disease genes, which are defective in patients afflicted with these diseases, have provided valuable insight into the mechanisms of copper balance and their role in maintaining appropriate copper distribution in mammals.

Reference Type
Journal Article | Review | Research Support, U.S. Gov't, P.H.S.
Authors
Pena MM, Lee J, Thiele DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference