Take our Survey

Reference: Kane PM (1999) Biosynthesis and regulation of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 31(1):49-56

Reference Help

Abstract


The yeast V-ATPase is highly similar to V-ATPases of higher organisms and has proved to be a biochemically and genetically accessible model for many aspects of V-ATPase function. Like other V-ATPases, the yeast enzyme consists of a complex of peripheral membrane proteins, the V1 sector, attached to a complex of integral membrane subunits, the V0 sector. Multiple pathways for biosynthetic assembly of the enzyme appear to be available to cells containing a full complement of subunits and enzyme activity may be further controlled during biosynthesis by a protease activity localized to the late Golgi apparatus. Surprisingly, the assembled V-ATPase is not a static structure. Instead, fully assembled V1V0 complexes appear to exist in a dynamic equilibrium with inactive cytosolic V1 and membrane-bound V0 complexes and this equilibrium can be rapidly shifted in response to changes in carbon source. The reversible disassembly of the yeast V-ATPase may be a novel regulatory mechanism, common to V-ATPases, that works in vivo in coordination with many other regulatory mechanisms.

Reference Type
Journal Article | Review | Review, Tutorial
Authors
Kane PM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference