Take our Survey

Reference: Fernandes AR and Sa-Correia I (1999) Comparative effects of Saccharomyces cerevisiae cultivation under copper stress on the activity and kinetic parameters of plasma-membrane-bound H(+)-ATPases PMA1 and PMA2. Arch Microbiol 171(4):273-8

Reference Help

Abstract


The major yeast plasma membrane H(+)-ATPase is encoded by the essential PMA1 gene. The PMA2 gene encodes an H(+)-ATPase that is functionally interchangeable with the one encoded by PMA1, but it is expressed at a much lower level than the PMA1 gene and it is not essential. Using genetically manipulated strains of Saccharomyces cerevisiae that exclusively synthesize PMA1 ATPase or PMA2 ATPase under control of the PMA1 promoter, we found that yeast cultivation under mild copper stress leads to a similar activation of PMA2 and PMA1 isoforms. At high inhibitory copper concentrations (close to the maximum that allowed growth), ATPase activity was reduced from maximal levels; this decrease in activity was less important for PMA2 ATPase than for PMA1 ATPase. The higher tolerance to high copper stress of the artificial strain synthesizing PMA2 ATPase exclusively, as compared to that synthesizing solely PMA1 ATPase, correlated both with the lower sensitivity of PMA2 ATPase to the deleterious effects of copper in vivo and with its higher apparent affinity for MgATP, and suggests that plasma membrane H(+)-ATPase activity plays a role in yeast tolerance to copper.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Fernandes AR, Sa-Correia I
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference