Take our Survey

Reference: Chen HR, et al. (1999) Snt309p modulates interactions of Prp19p with its associated components to stabilize the Prp19p-associated complex essential for pre-mRNA splicing. Proc Natl Acad Sci U S A 96(10):5406-11

Reference Help

Abstract

The SNT309 gene was identified via a mutation that causes lethality of cells in combination with a prp19 mutation. We showed previously that Snt309p is a component of the Prp19p-associated complex and that Snt309p, like Prp19p, is associated with the spliceosome immediately after or concomitantly with dissociation of U4 from the spliceosome. We show here that extracts prepared from the SNT309-deleted strain (DeltaSNT309) were defective in splicing but could be complemented by addition of the purified Prp19p-associated complex. Isolation of the Prp19p-associated complex from DeltaSNT309 extracts indicated that the complex was destabilized in the absence of Snt309p and dissociated on affinity chromatography, suggesting a role of Snt309p in stabilization of the Prp19p-associated complex. Addition of the affinity-purified Prp19p-Snt309p binary complex to DeltaSNT309 extracts could reconstitute the Prp19p-associated complex. Genetic analysis further suggests that Snt309p plays a role in modulating interactions of Prp19p with other associated components to facilitate formation of the Prp19p-associated complex. A model for how Snt309p modulates such interactions is proposed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chen HR, Tsao TY, Chen CH, Tsai WY, Her LS, Hsu MM, Cheng SC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference