Reference: Visintin R, et al. (1999) Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398(6730):818-23

Reference Help

Abstract

In eukaryotes, the activation of mitotic cyclin-dependent kinases (CDKs) induces mitosis, and their inactivation causes cells to leave mitosis. In budding yeast, two redundant mechanisms induce the inactivation of mitotic CDKs. In one mechanism, a specialized ubiquitin-dependent proteolytic system (called the APC-dependent proteolysis machinery) degrades the mitotic (Clb) cyclin subunit. In the other, the kinase-inhibitor Sic1 binds to mitotic CDKs and inhibits their kinase activity. The highly conserved protein phosphatase Cdc14 promotes both Clb degradation and Sic1 accumulation. Cdc14 promotes SIC1 transcription and the stabilization of Sic1 protein by dephosphorylating Sicl and its transcription factor Swi5. Cdc14 activates the degradation of Clb cyclins by dephosphorylating the APC-specificity factor Cdh1. So how is Cdc14 regulated? Here we show that Cdc14 is sequestered in the nucleolus for most of the cell cycle. During nuclear division, Cdc14 is released from the nucleolus, allowing it to reach its targets. A highly conserved signalling cascade, critical for the exit from mitosis, is required for this movement of Cdc14 during anaphase. Furthermore, we have identified a negative regulator of Cdc14, Cfi1, that anchors Cdc14 in the nucleolus.

Reference Type
Journal Article
Authors
Visintin R, Hwang ES, Amon A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference