Take our Survey

Reference: Wolf DA, et al. (1999) F-box/WD-repeat proteins pop1p and Sud1p/Pop2p form complexes that bind and direct the proteolysis of cdc18p. Curr Biol 9(7):373-6

Reference Help

Abstract


Ubiquitin-dependent proteolysis plays an important role in cell-cycle control [1] [2]. In budding yeast, the protein Skp1p, the cullin-family member Cdc53p, and the F-box/WD-repeat protein Cdc4p form the SCFCdc4p ubiquitin ligase complex, which targets the cyclin-dependent kinase (Cdk) inhibitor Sic1p for proteolysis [3] [4] [5] [6] [7] [8]. Sic1p is recruited to the SCFCdc4p complex by binding to the WD-repeat region of Cdc4p [5] [6], while Skp1p binds to the F-box of Cdc4p [9]. In fission yeast, two distinct Cdc4p-related proteins, Pop1p/Ste16p [10] [11] and the recently identified Sud1p/Pop2p [12], regulate the stability of the replication initiator Cdc18p and the Cdk inhibitor Rum1p. We show here that, despite their structural and functional similarities, the pop1 and pop2 genes fail to complement each other's deletion phenotypes, indicating that they perform non-redundant, but potentially interdependent, functions in proteolysis. Consistent with this hypothesis, Pop1p and Pop2p formed heterooligomeric complexes when overexpressed, and binding of Cdc18p to Pop2p was dependent on Pop1p. The Pop1p-Pop2p interaction was mediated by the amino-terminal domain of Pop2p which, when fused to full-length Pop1p, rescued the phenotype of a Deltapop1Deltapop2 double mutant. Thus, close physical proximity of two distinct F-box/WD-repeat proteins directs proteolysis mediated by the SCFPop ubiquitin ligase complex.

Reference Type
Journal Article
Authors
Wolf DA, McKeon F, Jackson PK
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference